Limit Theorems for the Number of Maxima in Random Samples from Planar Regions
نویسندگان
چکیده
We prove that the number of maximal points in a random sample taken uniformly and independently from a convex polygon is asymptotically normal in the sense of convergence in distribution. Many new results for other planar regions are also derived. In particular, precise Poisson approximation results are given for the number of maxima in regions bounded above by a nondecreasing curve.
منابع مشابه
Efficient maxima-finding algorithms for random planar samples
We collect major known algorithms in the literature for finding the maxima of multi-dimensional points and provide a simple classification. Several new algorithms are proposed. In particular, we give a new maxima-finding algorithm with expected complexity n + O( √ n logn) when the input is a sequence of points uniformly chosen at random from general planar regions. We also give a sequential alg...
متن کاملON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملCentral limit theorems for correlated variables: some critical remarks
In this talk I first review at an elementary level a selection of central limit theorems, including some lesser known cases, for sums and maxima of uncorrelated and correlated random variables. I recall why several of them appear in physics. Next, I show that there is room for new versions of central limit theorems applicable to specific classes of problems. Finally, I argue that we have insuff...
متن کاملBifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix
The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001